An Evaluation of Community Detection Algorithms on Large-Scale Email Traffic

نویسندگان

  • Farnaz Moradi
  • Tomas Olovsson
  • Philippas Tsigas
چکیده

Community detection algorithms are widely used to study the structural properties of real-world networks. In this paper, we experimentally evaluate the qualitative performance of several community detection algorithms using large-scale email networks. The email networks were generated from real email traffic and contain both legitimate email (ham) and unsolicited email (spam). We compare the quality of the algorithms with respect to a number of structural quality functions and a logical quality measure which assesses the ability of the algorithms to separate ham and spam emails by clustering them into distinct communities. Our study reveals that the algorithms that perform well with respect to structural quality, don’t achieve high logical quality. We also show that the algorithms with similar structural quality also have similar logical quality regardless of their approach to clustering. Finally, we reveal that the algorithm that performs link community detection is more suitable for clustering email networks than the node-based approaches, and it creates more distinct communities of ham and spam edges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Improving Community Detection Methods for Network Data Analysis

Empirical analysis of network data has been widely conducted for understanding and predicting the structure and function of real systems and identifying interesting patterns and anomalies. One of the most widely studied structural properties of networks is their community structure. In this thesis we investigate some of the challenges and applications of community detection for analysis of netw...

متن کامل

Overlapping Communities for Identifying Misbehavior in Network Communications

In this paper, we study the problem of identifying misbehaving network communications using community detection algorithms. Recently, it was shown that identifying the communications that do not respect community boundaries is a promising approach for network intrusion detection. However, it was also shown that traditional community detection algorithms are not suitable for this purpose. In thi...

متن کامل

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

تولید خودکار الگوهای نفوذ جدید با استفاده از طبقه‌بندهای تک کلاسی و روش‌های یادگیری استقرایی

In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012